重磅 | 南栖仙策发布强化学习工业决策软件REVIVE 1.0-企宣信息-政公网
安徽 北京 重庆 福建 广东 广西 甘肃
贵州 湖北 湖南 河北 黑龙江 河南 海南
江苏 江西 吉林 辽宁 内蒙古 宁夏 青海
上海 山东 山西 陕西 四川 天津 新疆
西藏 云南 浙江 展会 企宣
当前位置:首页 > 企宣信息
重磅 | 南栖仙策发布强化学习工业决策软件REVIVE 1.0
发布时间:2024-04-09

导读:在工业场景中,有很多需要做决策的任务,比如工业机器人控制、物流交通调度、化工生产和能源管理等。在这些决策场景中,好的控制策略可以帮助我们优化工业生产效率、减少错误,降低成本,推动工业向智能化和可持续发展方向迈进。当前以深度强化学习为代表的智能决策技术已经能够在围棋,游戏等场景中战胜顶尖的人类专家。然而,强化学习技术在实际工业环境中面临着一些挑战,如时间慢、成本高和安全性问题。

为了解决上述问题,南栖仙策开发了一款基于数据驱动的强化学习工具包REVIVE。这是一款面向工业场景中的决策任务的软件,旨在帮助企业优化工业生产效率、减少错误,降低成本,推动工业向智能化和可持续发展方向迈进。


自2021年正式对外发布0.5版本以来,REVIVE已经完成了0.6-0.9版本的更新,每次更新都会带来新的特性,使得REVIVE的效果更好,使用起来更方便。今天为大家带来的是REVIVE的最新版本:REVIVE 1.0.


REVIVE 1.0通过算法调优升级,使得训练得到的算法更好更稳定,同时集成了丰富的内置函数和自定义模块,使用起来更加灵活方便,通过代码优化和资源并行加速使得模型训练更快。


现代工业系统通常涉及多个生产过程,包括原材料处理、加工、装配和包装等。这些系统通常包括多个层次和子系统,涉及各种不同的工艺、设备和控制系统。复杂的系统具有大量的输入和输出变量,而且这些变量之间的关系可能相互交织、不明确或非线性,这给决策任务的建模和优化带来了非常大挑战。

所以REVIVE 1.0增加了注意力机制的Backbone,这一机制使得在缺乏专家知识的情况下,模型也能够通过调整注意力权重自适应的捕捉数据之间的关系,实现对复杂工艺控制和系统的有效建模。


此外,针对时延问题,REVIVE 1.0也对原有的RNN Backbone进行了优化,模型能够更高效地提取和传递时序信息,显著提升在管网控制、化工过程等长流程和大时滞任务场景上的性能。


同时,REVIVE 1.0增加了神经网络干扰器单模块,通过多个神经网络干扰器对训练得到的环境模型进行扰动,增强环境模型的多样性,提升策略适应不同工况的泛化性能。


我们相信,REVIVE 1.0将为工业企业提供一种全新的决策方式,帮助企业在工业生产中实现智能化升级。

政公网
Copyright 2009-2021 zgw123.cn Inc. All rights reserved.
备案序号:鲁ICP备08104861号
联系客服 Email:16933431@qq.com QQ:16933431
转到电脑端